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Methodology (based on so-called Dynamic Virtual Distortion Method) of control
of water supply in water networks is presented. Minimization of supply pressure
in inlets to the network, subject to inequality constraints imposed on outlet pres-
sure (in chosen nodes) is discussed. Taking advantage of pre-computed influence
vectors, the real-time control strategy can be realised with small computational
effort and therefore, can be managed with use of hardware-based controllers. Lin-
ear constitutive relation (water flow vs. drop of pressure) has been assumed in
order to develop the first step of the methodology. However, generalisation of the
proposed approach for a piece-wise-linear case is planned in the near future.

Key words: water networks, optimal supply control, VDM based design.

1. Introduction

A software tool for signal processing in control of supply in water networks
is presented. It is assumed that the water pressure in the network’s nodes in
a distance of controlled inlet can be measured and also that the inlet pressure
can be modified in real time in a controlled way. Then, making use of the
analytical network model of this installation and using presented below, so
called Virtual Distortion Method (VDM), the control of water supply can be
performed.

The problem of management of water sources is more and more important
in the world scale. Therefore, there is requirement for an automatic water
supply control. The proposed approach is based on continuous observation
of the pressure distribution in nodes of the water network. Having a reliable
(verified versus field tests) numerical model of the network and its responses
for determined inlet and outlet conditions, any modifications to the normal
network response (pressure distribution) can be detected. Then, applying
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proposed bellow numerical procedure, the correction of water supply can be
determined.

The proposed methodology is based on so called Virtual Distortion
Method (VDM) approach, applicable also in the problem of damage identi-
fication through monitoring of piezo-generated elastic wave propagation [3].
This technique (called Piezodiagnostics) is focused on efficient numerical per-
formance of l inverse, non-linear, dynamic analysis. The crucial point of the
concept is pre-computing of structural responses for locally generated im-
pulse loadings by unit virtual distortions (similar to local heat impulses).
These responses stored in so-called influence matrix allows composing of all
possible linear combinations of local non-linearities (due to defect) influence
on final structural response. Then, using a gradient-based optimization tech-
nique, the intensities of unknown, distributed virtual distortions (modeling
local defects) can be tuned to minimize the distance between the computed
final structural response and the measured one.

2. Definitions and linear analysis

Let us describe the network analysis (cf. [1]) based approach to modelling
of water systems using oriented graph of small example shown in Fig. 1, with
topology defined by the following incidence matrix:

L =









−1 −1 0 0 0
1 0 −1 1 0
0 1 0 −1 −1
0 0 1 0 1









, (2.1)

where rows correspond to the network’s nodes while columns correspond to
the branches.

Let us define the following quantities describing the state of the water
network:

• H – the vector of pressure (the height of water potential) in network’s
nodes,

• ε – the vector of drop of pressure in network’s branches,

• Q – the vector of water flow in network’s branches,

• R – the vector of flow capacity in network’s branches (depends on
pipes’ cross-sections, length, material, etc.).

Now, the following equations governing the water distribution can be
formulated:

• equilibrium of inlets and outlets for nodes:

LQ = −q, (2.2)



Control of supply in water networks – linear case 271

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

  
 

1 
1 

1’  

2 

2’  

3 

3’  
4’  

4 

3 

4 

5 

W0 

2 

fictitious branches 
real branches 

Figure 1. Water network.

• definition of drops of pressure for branches:

LT H = ε, (2.3)

• constitutive relation governing local flow in branches:

Q = −R ε, (2.4)

where q denotes external inlet to the system.

The constitutive relation (2.3) is non-linear. Nevertheless, let us as-
sume temporarily linearity of this relation. Substituting Eqs. (2.4) and (2.3)
to (2.2), the following formula can be obtained:

LRLTH = q, (2.5)

allowing determination of water pressure in nodal points as the response for
determined inlets.

It will be demonstrated, that having numerical model of the water net-
work and knowing nodal pressure distribution (measured in real time), the
optimal water supply can be determined.

3. Control of water supply: problem formulation and particu-
lar examples

Let us discuss the control of water networks. The objective is to minimize
the water supply (energy saving) keeping the pressure in all outlets above
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some limit value. Assuming that the height of outlet nodes can be monitored
in real time, specially programmed controller can adapt (feedback) the inlet
intensity to meet the minimum supply condition. The aim of the following
analysis is to determine the basis for the controller operation.

In the case of low pressure (below the imposed limit value) in any of
the outlets, the controller provokes increase of the inlet to achieve the right
pressure level. Contrary, in the case of pressure higher than the limit value
in all outlets, the controller provokes reduction of the inlet in order to meet
the limit-pressure-value in a one (at least) outlet. Let us discuss this problem
using the network example illustrated in Fig. 2.
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Figure 2. The water supply control concept.

We assume that the heights of nodes No. 3 and No. 4 were previously
measured and we have to calculate the unknowns: R′

3
, R′

4
, H1, H2 in order

to determine outlets q3 and q4. In this case the corresponding set of equation
looks as follows:











R1 + R2 −R1 −R2 0

−R1 R1 + R3 + R4 −R4 −R3

−R2 −R4 R2 + R4 + R5 −R5

0 −R3 −R5 R3 + R5





















H1

H2

H3

H4











=











q1

0

q3

q4











(3.1)

where:

q3 = R′

3(H0 − H3), q4 = R′

4(H0 − H4). (3.2)



Control of supply in water networks – linear case 273

In the above formulas H denotes the water pressure in the node (i.e. the
height of water), whereas q denotes the flow in the branch. Moreover,

R =
K2

l
,

where K is the characteristic of element, and l is the length of element.
Substituting Eqs. (3.2) to (3.1) the following set of equations can be de-

rived:











R1 + R2 −R1 0.00 0.00

−R1 R1 + R3 + R4 0.00 0.00

−R2 −R4 R′

3
0.00

0.00 −R3 0.00 R′

4





















H1

H2

R′

3

R′

4











=











q1 + R2H3

R4H3 + R3H4

−(R
2
+ R4 + R5)H3 + R5H4

R5H3 + (R3 + R5)H4











, (3.3)

where it was assumed that the network is supplied only through the
node No. 1 (inlet with intensity q1) and the only outlets are through the
nodes No. 3 and No. 4 R′

2
= 0, what means, that the outlet in nodes No. 2

vanishes. The unknowns H1, H2, R′

3
, R′

4
can be determined from Eqs. (3.3)

knowing measured H3, H4 and q1.
The problem of active control of the inlet intensity γ q1 (where γ denotes

the controlled inlet intensity) can be formulated as follows.

min γ, (3.4)

subject to the following constraints, requiring that the pressure in the outlet
joints is not smaller than some minimal admissible value H ′:

H3(γ q1) > H ′, H4(γ q1) > H ′. (3.5)

It can be demonstrated that for the linear case, the above problem for-
mulation leads to the solution requiring that the pressure in the lowest outlet
joint i (Hi = min) is equal to the H ′:

Hi = H ′. (3.6)

Let us now assume that the limit value for the pressure in outlets No. 3
and 4 (Fig. 2) is determined as H ′ = 0.80 and consider the following partic-
ular cases.
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Particular case. Assuming the following data: R1=0.004, R2 = R3 =
R5=0.016, R4=0.011, q1 = 0.05m3/sec, H0 = 0.0 and heaving the following
measurements: H3 = 0.0438, H4 = 0.0062 the corresponding set of equa-
tions (3.3) takes the following form:











0.020 −0.004 0.000 0.000

−0.004 0.031 0.000 0.000

−0.016 −0.011 0.0438 0.000

0.000 −0.016 0.000 0.0062





















H1

H2

R′

3

R′

4











=











0.05070

0.00058

−0.00179

0.000900











, (3.7)

what leads to: H1 = 2.606m , H2 = 0.355m , R′

3
= 1.00, R′

4
= 1.00 and the

outlets are as follows: q3 = −0.0438m3/s, q4 = −0.062m3/s. Note that the
minimum height of outlets is H4 = H ′ = 0.0062m and no modification of
the inlet intensity is required.

Case I: when Hmin < H ′. Now let us analyse another case of the above
network, when due to the outlets modification the measured heights are:
H3 = 0.035m, H4 = 0.005m, what means that: Hmin = H4 < H ′.

The set of equations (3.3) takes the following form in this case:










0.020 −0.004 0.000 0.000

−0.004 0.031 0.000 0.000

−0.016 −0.011 0.035 0.000

0.000 −0.016 0.000 0.005





















H1

H2

R′

3

R′

4











=











0.04056

0.00046

−0.00143

0.00072











, (3.8)

which leads to: H1 = 2.0848, H2 = 0.2840, R′

3
= 1.00, R′

4
= 1.00 where

coefficients R′

3
and R′

4
determine the current outlet intensities (Eqs. 3.2).

Using determined above quantities of the coefficients R′

3
and R′

4
we can

rearrange the set of equations (3.3) imposing additional condition H4 = H ′

and assuming that the inlet intensity γ has to be modified (to meet require-
ment (3.6)):











R1 + R2 −R1 −R2 q1

−R1 R1 + R3 + R4 −R4 0.00

−R2 −R4 R2 + R4 + R5 + R′

3
0.00

0.00 −R3 −R5 0.00





















H1

H2

H3

γ











=











0.00

R3H4

R5H4

−(R3 + R5 + R′

4
)H4











. (3.9)
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Substituting the corresponding values we get:










0.0200 −0.004 −0.0160 −0.050

−0.004 0.0310 −0.0110 0.000

−0.016 −0.0113 1.04303 0.000

0.0000 −0.0160 −0.0160 0.000





















H1

H2

H3

γ











=











0.00000

0.000099

0.000099

−0.00638











, (3.10)

which leads to: H1 = 2.606m, H2 = 0.355m, H3 = 0.0438m, γ = 1.25, and
the corresponding outlets: q3 = −0.0438m3/s, q4 = −0.0062m3/s.

Therefore, we have to increase the inlet by 25% in order to keep the
minimal level of height in outlets.

Substituting (just for checking) the modified inlet γ q1 to the set of equa-
tions (3.1) we can get:











0.0200 −0.004 −0.016 0.00

−0.004 0.0310 −0.011 −0.016

−0.016 −0.0113 1.04403 −0.016

0.0000 −0.0160 −0.0160 1.1273





















H1

H2

H3

H4











=











0.05

0.00

0.00

0.00











, (3.11)

which leads to the pressure distribution H1 = 2.606m, H2 = 0.355m, H3 =
0.0438m, H4 = 0.05m satisfying requirements (3.5).

Case II: when Hmin > H ′. In this case we assume that the following heights
of nodes 3 and 4: H3 = 0.527m, H4 = 0.0074m has been observed, what
leads to the corresponding set of equations (3.3):











0.020 −0.004 0.000 0.000

−0.004 0.031 0.000 0.000

−0.016 −0.011 0.0527 0.000

0.000 −0.016 0.000 0.0074





















H1

H2

R′

3

R′

4











=











0.060843

0.000699

−0.002148

0.0010812











, (3.12)

and to the following result: H1 = 3.1265, H2 = 0.4219, R′

3
= 1.00, R′

4
= 1.00.

The corresponding outlets are q3 = −0.009425m3/s, q4 = −0.04058m3/s.
The minimum height H4 is bigger than H ′ what means that the water

supply can be reduced. Using determined above quantities of the coefficients
R′

3
and R′

4
we can use the rearranged set of equations (3.9) imposing addi-

tional condition H4 = H ′ and assuming that the inlet intensity γ has to be
modified (to meet requirement (3.6)):











0.0200 −0.0040 −0.01600 −0.060

−0.004 0.03100 −0.01131 0.000

−0.016 −0.0113 1.04300 0.000

0.0000 −0.0160 −0.0160 0.000





















H1

H2

H3

γ











=











0.000000

0.000099

0.000099

−0.006391











(3.13)
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The results are following: H1 = 2.626m, H2 = 0.355m, H3 = 0.044m, γ =
0.83, and the corresponding outlets q3 = −0.044m3/s, q4 = −0.0060m3/s.
The controller will execute reduction of the inlet intensity by 18% in this
case.

Substituting the modified inlet γ q1 to the set of equations (3.1):











0.0200 −0.004 −0.016 −0.050

−0.004 0.0310 −0.011 −0.016

−0.016 −0.0113 0.04677 −0.016

0.0000 −0.0160 −0.0160 0.07258





















H1

H2

H3

H4











=











0.05

0.00

0.00

0.00











, (3.14)

we can check that the resulting pressure distribution: H1 = 2.626m , H2 =
0.355m, H3 = 0.044m, H4 = 0.0062 satisfy requirements (3.5).

4. Conclusions and further steps (non-linear case)

It has been demonstrated (on basis of analysis of particular cases) that
optimal control of water supply for the system with linear constitutive equa-
tions require solving of two sets of linear equations before each modification
of the inlet pressure. However, taking into account real, non-linear constitu-
tive characteristics the optimal control problems become more difficult and
cannot be converted just to solving linear equation systems. Nevertheless,
further exploitation of analogy between elasto-plastic structures and water
networks can be examined. Assuming piecewise-linear constitutive relations
describing water flow in the considered networks and introducing concept of
influence matrix, an analogy to the problem of load minimisation for elasto-
plastic structures (with deflections of chosen nodes not lower than some given
values) can be explored. In the consequence, an algorithm similar to that for
VDM based load maximisation for elasto-plastic truss structures [4] can be
expected. This path will be explored in the separate paper.

Local non-linearity can be included into the discussed water network sys-
tem through so called virtual distortion ε0 introduced into the formula (2.5):

LR(LTH − ε
0) = q. (4.1)

This concept is analogous to virtual distortions used for simulation of non-
linearities in structural systems (cf. [2, 4]). The influence of virtual distor-
tions on the resultant flow redistribution can be calculated making use of
so called influence matrix DH

ij describing water pressure HR
i induced in the

network as the response for the unit virtual distortion ε0

j = 1 generated in

the branch j. Therefore, the vector HR can be calculated from the following
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equation obtained from Eq. (4.1):

LRLTHR = LRI. (4.2)

Coming back to our small example, let us generate the unit virtual distortion
in the branch No. 4. The corresponding set of equations (4.2) with modifica-
tions due to the boundary conditions takes the following form:











0.02 −0.004 −0.016 0

−0.004 0.0313 −0.0113 −0.016

−0.016 −0.0113 0.0433 −0.016

0 −0.016 −0.016 1, 032























HR′

1

HR′

2

HR′

3

HR′

4













= −











0

−0.0113 ε0
4

0.0113 ε0
4

0











, (4.3)

where ε0
4

= 1.
The resulting distribution of potentials is HR = [0.1508 − 0.2513 0.2513

0.0]T. Substituting the resulting distribution of potentials to Eq. (2.3), one
can get:

















ε1

ε2

ε3

ε4

ε5

















=

















−1 1 0 0

−1 0 1 0

0 −1 0 1

0 1 −1 0

0 0 −1 1



























−0.1508

0.2513

−0.2513

0











=

















0.4021

−1, 005

−0.2513

0.50265

0.2513

















, (4.4)

what leads to εR = [0.4021 − 0.1005 − 0.2513 0.50265 0.2513]T, and consti-
tutes the column of the incidence matrix Dε. Continuing this procedure for
virtual distortions generated in other branches, the full influence matrix can
be determined:

Dε
ij =

















0.3153 0.6847 −0.288 0.4021 0.2883

0.1712 0.8288 0.072 −1, 005 −0.072

−0.0721 0.0721 0.6799 −0.2513 0.3198

0.1441 −0.1441 −0.36 0.50265 0.3603

0.072 −0.072 0.6799 0.2513 0.6801

















(4.5)

Now, various types of non-linearities can be simulated through properly
tuned virtual distortions. Our objective will be focused on simulation of non-
linear constitutive characteristics:

Qi = −Ri ε
q
i − Ri

∑

ij

Dε
ij ε0

j , (4.6)

where ε
q
i denotes linear response of the system.
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